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Abstract

Effective teaching requires an understanding
of a student’s knowledge state—what mate-
rial the student has and has not mastered
and what material is fragile and easily lost.
To facilitate automated teaching, our goal is
to construct models that infer the knowledge
state of individual students for specific ele-
ments of knowledge. The challenge to infer-
ence is that the available evidence is quite
weak. For example, suppose that a student
solved four out of five specific long-division
problems correctly on a quiz; how well would
you expect the student to do on a particu-
lar long-division problem assigned a month
later? To overcome the sparsity of obser-
vations, we use a collaborative filtering ap-
proach that leverages information about a
population of students studying a population
of items (elements of knowledge) to infer how
well a specific student has learned a specific
item. We extend item-response theory, a tra-
ditional class of models that recover latent
traits of students and items, to address the
facts that knowledge state is nonstationary
and that both observations and predictions
may span a broad range of time. This ex-
tension is based on a psychological model
of memory that can take into account dy-
namic information about study history. We
evaluate three alternative models whose la-
tent variables are determined either via max-
imum likelihood estimation or a hierarchical
Bayesian approach. We show for two differ-
ent student-learning data sets that, when we
combine multiple weak sources of information
from the population, we can make strong in-
ferences about an individual student’s knowl-
edge and performance.

1 Introduction

Effective teaching requires an understanding of the
knowledge state of students—what material the stu-
dent already grasps well, what material can be easily
learned, and what material is fragile and likely to be
forgotten without additional teaching effort. Based
on the knowledge state, individualized teaching poli-
cies can be constructed that present highly relevant
information and maximize instructional effectiveness.
State-of-the-art software tutors (e.g., [1–3]) incorpo-
rate models of the student in order to make inferences
about latent state variables. These models are typi-
cally expert system based and are constructed through
extensive handcrafted analysis of the teaching domain
and by means of iterative evaluation and refinement.

We describe a complementary approach to inferring
the knowledge state of students that is fully automatic
and independent of the content domain. Our approach
applies in any domain whose mastery can be decom-
posed into distinct, separable elements of knowledge or
items to be learned. Applicable domains range from
the concrete to the abstract, and from the perceptual
to the cognitive, and span qualitatively different forms
of knowledge including:

• declarative (factual) knowledge, e.g., “The Ger-
man word for dog is hund” and “The American
civil war began in 1861”;

• procedural (skill) knowledge, e.g., processing
columns of digits in multidigit addition from right
to left, and specifying unknown quantities as vari-
ables as the first step in translating algebraic word
problems to equations; and

• conceptual knowledge, e.g., understanding be-
trayal (“Did Benedict Arnold betray his coun-
try?”) and reciprocation (“How is the US-
Pakistani relationship reciprocal?”), as well as
perceptual categorization (e.g., classifying the
species of a bird shown in a photo).



What does it mean to infer a student’s knowledge
state, especially in a domain-independent way? The
knowledge state consists of unobservable aspects of a
student’s cognitive architecture such as the decay rate
of a specific declarative memory, the strength of an
association, or the boundary of a concept in semantic
space. Such representations cannot be validated and
therefore have little value except insofar as they can
be used to make meaningful predictions. In particu-
lar, they have implications for education: being able
to predict a student’s future skill and knowledge. Our
work thus focuses on comparing models in terms of the
accuracy of their predictions.

Inferring a student’s knowledge state from behavioral
evidence is a daunting challenge because behavioral ev-
idence is fairly weak. It can trivially include whether
or not students correctly answered specific questions in
the past, but can include subtler forms of evidence as
well. For correct answers, the time to respond might
be diagnostic of the knowledge state; for erroneous an-
swers, the response itself might be diagnostic. Valu-
able information also comes from the study history:
when in the past the specific material was studied, as
well as the duration and manner of past study. His-
tory is particularly relevant because all forms of learn-
ing show forgetting over time, and retention is partic-
ularly fragile when the material being learned is un-
familiar [4, 5]. Further, the temporal distribution of
practice has an impact on the durability of learning
for various types of material [6, 7].

Consider declarative (fact) learning, the domain we
will use as an illustration throughout this paper. If
a student studies via cued retrieval practice, as when
flashcards are used for drilling, one bit of information
is obtained about the student’s memory state for a
fact: either the fact is available or it is not. From this
meager information, we hope to then predict whether
the fact will be accessible in an hour, a week, or a
month.

Complicating the prediction problem is the ubiquity of
individual differences in every form of learning. Tak-
ing an example from fact learning, Figure 1a shows ex-
treme variability in a population of 60 students. These
students studied foreign-language vocabulary at four
precisely scheduled times over a four week period. A
cued-recall exam was administered after an eight week
retention period and the exam scores were highly dis-
persed despite the uniformity in materials and training
schedules.

In addition to inter-student variability, inter-item vari-
ability is a consideration. Learning a foreign vocabu-
lary word may be easy if it is similar to its English
equivalent, but hard if it is similar to a different En-
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Figure 1: (upper) Histogram of proportion of items re-
ported correctly on a cued recall task for a population
of 60 students learning 32 Japanese-English vocabu-
lary pairs [8]; (lower) Histogram of proportion of sub-
jects correctly reporting an item on a cued recall task
for a population of 120 Lithuanian-English vocabulary
pairs being learned by roughly 80 students [9]

glish word. Figure 1b shows the distribution of re-
call accuracy for 120 Lithuanian-English vocabulary
items averaged over a set of students. With a single
round of study, an exam administered several minutes
later suggests that items show a tremendous range in
difficulty (krantas→shore was learned by only 3% of
students; lova→bed was learned by 76% of students).
Although some of this variability is due to measure-
ment error, the importance of inter-item differences is
acknowledged by psychologists, and in fact, these data
were collected in order to determine difficulty norms
for individual items.

Given inter-student differences, the abilities of a par-
ticular student cannot be determined without suffi-
cient experience teaching that student; given inter-
item differences, the challenge of a new item cannot
be determined without sufficient experience teaching
that item. By the point at which this experience is ac-
quired, it may be too late for it to be useful in teaching.
We propose a solution to this dilemma that leverages
a population of students learning a population of items
to make inferences concerning the knowledge state of



individual students for specific items. (We refer to this
pair as a student-item.)

Our approach is a form of collaborative filtering in
which we predict whether a student who has mastered
items X and Y will likely have mastered Z, based on
the performance of other students for the same item
and the performance of that student for other items.
This approach fundamentally needs to address the
dynamic nature of latent knowledge states. Dynam-
ics differentiate our task from canonical collaborative-
filtering tasks (e.g., movie preference prediction) in
three respects. First, canonical tasks require predic-
tions only about the present, but effective teaching
requires predictions about the future performance of
a student in order to select appropriate material at
the present. Second, canonical tasks may allow for
nonstationarity—for example, a change in movie pref-
erences over time—but as we argued earlier, the cur-
rent knowledge state is causally dependent on the dis-
tribution, frequency, and type of past study. Third,
canonical tasks make predictions (e.g., about whether
Fred will like the movie Borat) without any direct past
evidence from Fred about Borat, whereas in learning
scenarios, each student typically has a history of en-
countering and being evaluated on a specific fact, skill,
or concept in the past.

2 Models for predicting student
performance

Our work is based on item-response theory (IRT),
the classic psychometric approach to inducing latent
traits of students and items based on exam scores [10].
Whereas IRT assumes static states of knowledge, we
are concerned with states that depend on the temporal
history of study. We thus propose novel models that
incorporate this history and in general better embody
the dynamics of student learning and retention.

2.1 Item-response theory (IRT)

Among other applications, IRT is used to analyze and
interpret results from standardized tests such as the
SAT and GRE, which consist of multiple-choice ques-
tions and are administered to large populations of stu-
dents. Suppose that nS students take a test consisting
of nI items, and the results are coded in the binary
matrix R ≡ {rsi}, where s is an index over students,
i is an index over items, and rsi is the binary (correct
or incorrect) score for student s’s response to item i.
IRT aims to predict R from latent traits of the stu-
dents and the items. Each student s is assumed to
have an unobserved ability, represented by the scalar
as. Each item i is assumed to have an unobserved
difficulty level, represented by the scalar di.

IRT specifies the probabilistic relationship between the
predicted response, Rsi and as and di. The simplest
instantiation of IRT, called the one-parameter logistic
(1PL) model because it has one item-associated pa-
rameter, is:

Pr(Rsi = 1) =
1

1 + exp(di − as)
. (1)

(A more elaborate version of IRT, called the 3PL
model, includes an item-associated parameter for
guessing but that is mostly useful for multiple-choice
questions where the probability of correctly guessing is
nonnegligible. Another variant, called the 2PL model,
includes parameters that allow for student ability to
have a nonuniform influence across items. We explored
the 2PL model, but found for our data sets that it was
indistinguishable from the 1PL model.)

The free parameters of IRT are typically fit by maxi-
mum likelihood. Bayesian variants of IRT have been
proposed that allow for additional knowledge in the
form of hierarchical priors over student ability and
item difficulty [11].

IRT is generally used to analyze tests and surveys post-
hoc, in order to evaluate the diagnosticity of test items
and the skill level of students [12]. Extensions have
been proposed to allow for a student to have a different
ability at different times [13], but plenty of opportu-
nity remains to explore dynamic variants of IRT that
predict future performance of students, integrate the
longitudinal history of study, and, instead of directly
predicting behavioral outcomes, do so through latent
knowledge state variables (such as memory decay rate
or concept boundaries). We take first steps in this di-
rection by incorporating the latent traits of IRT into
a theory of forgetting.

2.2 Theories of forgetting

Psychologists have spent well over a century analyzing
the temporal characteristics of learning and memory.
The modern consensus is when a set of materials are
learned in a single study session and then tested follow-
ing some lag t, the probability of recalling the studied
material decays according to a generalized power-law
function of t,

Pr(recall) = m(1 + ht)−f , (2)

where 0 ≤ m ≤ 1 is the degree of learning, h > 0 is a
scaling factor on time, and f > 0 is the memory decay
exponent [14].

The form of this curve is supported by data from
populations of students and/or populations of items.
The forgetting curve cannot be measured for a sin-
gle student-item due to the observer effect and the



all-or-none nature of forgetting, but we will assume
the functional form of the curve for a student-item
is the same. However, we would like to incorporate
the notion that forgetting depends on latent IRT-like
traits that characterize student ability and item diffi-
culty. Because the critical parameter of forgetting is
the memory decay exponent, f , and because f changes
as a function of skill and practice [15], we could indi-
viduate forgetting for each student-item by setting the
decay exponent based on latent IRT-like traits:

Pr(Rsi = 1) = m(1 + htsi)
− exp(ãs−d̃i), (3)

where tsi denotes the retention interval—the time be-
tween initial presentation of item i to student s and a
later recall test. We have added the tilde to ãs and d̃i
to indicate that these ability and difficulty parameters
are not the same as those in Equation 1, and using
f ≡ exp(ãs − d̃i) ensures that f remains nonnegative.

Another alternative we consider is individuating the
degree-of-learning parameter instead of d. This gives
the model

Pr(Rsi = 1) =
(1 + htsi)

−f

1 + exp(di − as)
. (4)

As a final alternative, we can individuate both the for-
getting parameter f and degree-of-learning parameter
m. This yields a hybrid model:

Pr(Rsi = 1) =
(1 + htsi)

− exp(ãs−d̃i)

1 + exp(di − as)
. (5)

Both this hybrid model and Equation 4 simplify to 1PL
(Equation 1) at t = 0. For t > 0, recall probability
decays as a power-law function of time.

2.3 A space of models to explore

We explored five models whose probability of recall for
individual student-items was determined by the mod-
els presented in Equations 1− 5:

• irt : the 1PL IRT model (Equation 1);

• memory : a power-law forgetting model with
population-wide parameters (Equation 2);

• hybrid decay : a power-law forgetting model
with decay rates based on latent student and ite
traits (Equation 3);

• hybrid scale : a power-law forgetting model
with the degree-of-learning based on latent stu-
dent and item traits (Equation 4); and

• hybrid both : a power-law forgetting model that
individuates both the decay rate and degree-of-
learning (Equation 5).

Each of these models was trained in one of two ways:
(1) using maximum likelihood (ml) fits of model pa-
rameters to the training data, and (2) using a hier-
archical Bayesian approach (bayes) that makes weak
distributional assumptions about the parameters (Ta-
ble 1). Inference on the two sets of latent traits in the
hybrid both model—{as} and {di} from 1PL, {ãs}
and {d̃i} from hybrid decay—is done jointly, leading
to possibly a different outcome than the one that we
would obtain by first fitting the 1PL and then inferring
the decay-rate determining parameters. In essence, the
hybrid both model allows the corrupting influence of
time to be removed from the 1PL variables, and allows
the corrupting influence of static factors to be removed
from the forgetting-related variables.

2.4 Simulation methodology

We employed Markov chain Monte Carlo techniques
for posterior inference in the Bayesian models pre-
sented in Table 1. Gibbs sampling isn’t feasible in our
models, but we can use Metropolis-within-Gibbs [16],
an extension of Gibbs sampling wherein each draw
from the model’s full conditional distribution is per-
formed by a single Metropolis-Hastings step.

Each model assumes that latent traits are normally
distributed with mean zero and an unknown precision
parameter shared across the population of items or stu-
dents. The precision parameters are all given Gamma
priors. Through Normal-Gamma conjugacy, we can
analytically marginalize them before sampling. Each
latent trait’s conditional distribution thus has the form
of a likelihood term (defined in the previous section)
multiplied by the probability density function of a non-
standardized Student’s t-distribution. For example,
the ability parameter in the hybrid scale model is
drawn via a Metropolis-Hastings step from the distri-
bution

p(as | a¬s,d, h,m,R) ∝
∏
i

P (rsi | as, di, h,m)

×

(
1 +

a2s
2(ψ2 + 1

2

∑
j 6=s aj)

)ψ1+
nS−1

2

(6)

where the first term is given by Equation 4. The effect
of the marginalization of the precision parameters is
to tie the traits of different students together so that
they are no longer conditionally independent.

For the maximum likelihood models, we found fits
using standard gradient-based nonlinear optimization
techniques (Matlab’s fminunc function). To find a fit,
we ran the optimization method with five randomized
starting locations and took the best solution.

Hyperparameters ψ of the Bayesian models were set



irt hybrid decay hybrid scale

rsi | as, di
∼ Bernoulli(psi)

rsi | ãs, d̃i,m, h, tsi
∼ Bernoulli(mp̃si)

rsi | as, di, ãs, d̃i, h, tsi
∼ Bernoulli(psip̃si)

psi = (1 + exp(di − as))−1

as | τa ∼ Normal(0, τ−1a )

di | τd ∼ Normal(0, τ−1d )

τa ∼ Gamma(ψa1, ψa2)

τd ∼ Gamma(ψd1, ψd2)

p̃si = (1 + htsi)
− exp(ãs−d̃i)

ãs | τã ∼ Normal(0, τ−1ã )

d̃i | τd̃ ∼ Normal(0, τ−1
d̃

)

τã ∼ Gamma(ψã1, ψã2)

τd̃ ∼ Gamma(ψd̃1, ψd̃2)

h ∼ Gamma(ψh1, ψh2)

m ∼ Beta(ψm1, ψm2)

p̃si = (1 + htsi)
−f

f ∼ Gamma(ψf1, ψf2)

All other parameters are
same as irt and hybrid
decay

Table 1: Distributional assumptions of the generative Bayesian response models. The hybrid both model
shares the same distributional assumptions as the hybrid decay and hybrid scale models.

Study name S1 S2
Source Anonymous (2012) Anonymous (2008)

Materials Japanese-English vocabulary Interesting but obscure facts
# Students 32 1354
# Items 60 32

Rounds of Practice 3 1
Retention Intervals 3 min–27 days 7 sec–53 min

Table 2: Experimental data used for simulations

so that all the Gamma distributions had shape pa-
rameter 1 and scale parameter .1. For each run of
each model, we combined predictions from across three
Markov chains, each with a random starting location.
Each chain was run for a burn in of 1,000 iterations
and then 2,000 more iterations were recorded. To re-
duce autocorrelation among the samples, we thinned
them by keeping every tenth one.

3 Simulation results

We present simulations of our models using data from
two previously published psychological experiments
exploring how people learn and forget facts, summa-
rized in Table 2. In both experiments, students were
trained on a set of items (cue-response pairs) over mul-
tiple rounds of practice. In the first round, the cue and
response were both shown. On subsequent rounds, re-
trieval practice was given: students were asked to pro-
duce the appropriate response to each cue. Whether
successful or not, the correct response was then dis-
played. Following training and a delay tsi that was
specific to each student and each item, an exam was
administered, obtaining the rsi binary value for that
student-item.

To evaluate the models, we performed 50-fold valida-
tion. In each fold, a random 80% of elements of R were
used for training and the remaining 20% were used for
evaluation. Each model generates a prediction of re-
call probability at the exam given tsi, conditioned on
the training data, which can be compared against the
held-out data. Each model’s ability to discriminate
successful and unsuccessful recall trials was assessed
with a signal-detection analysis [17].

Figure 2 shows the ROC curves for Study S1 for the
Bayesian versions of the models. Each curve is the
mean across validation folds for a particular model.
The area under the ROC curve (hereafter, AUC) is
a measure of the model’s predictive ability: the more
bowed the curve, the better the model is at predicting
a particular student’s recall success on a specific item
after a given lag. The figure includes the models de-
scribed earlier, including the baseline irt model that
ignores the time lag between study and test, and the
baseline memory model that assumes power law for-
getting but assumes parameters of the power function
that are independent of the student and the item.

The top panel of Figure 3 summarizes the AUC values
for Study S1. The baseline memory model is trounced
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Figure 2: Mean ROC curves for the Bayesian models
on held out data from Study S1.

by the other models (p < .01 for all pairwise compar-
isons with memory by a two-tailed t test), suggesting
that the other models have successfully recovered la-
tent student and item traits that can be used to im-
prove inference about the knowledge state of a par-
ticular student-item. Though performance is high for
all the non-baseline models, the hybrid both model
does better than its peers.

The middle panel of Figure 3 presents the AUC val-
ues for Study S2. These results are consistent with
our findings for S1. First, memory fails to predict as
well as any of the models that accommodate individual
differences (p < .01 for all pairwise comparisons with
memory by a two-tailed t test). Second, the hybrid
both model outperforms the other models. This sug-
gests that allowing for individual differences both in
degree of learning and rate of forgetting is appropriate
even on the short timescale of Study S2.

The ml models are compared to the bayes models in
the bottom panel of Figure 3 for study S1. For the
irt and memory models, bayes provides no benefit.
However, hybrid both bayes yields significantly bet-
ter discrimination than hybrid both ml (p < .01 by
paired t test). In the Bayesian models, ability param-
eters of each student s, as and ãs, are constrained by
the distribution of abilities of the other students, via
a hierarchical prior; likewise, the difficulty parameters
of each item i, di and d̃i, are similarly constrained
by their population distributions. These constraints
bias inference in the right direction so long as assump-

tions concerning the qualitative shape of the popula-
tion distributions are appropriate. The two findings we
have presented—(1) that systematic individual (stu-
dent and item) differences exist that can be used for
predicting knowledge state, and (2) that the popula-
tion distributions are useful for prediction—are not in-
compatible.
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Figure 3: The top and middle graphs show mean AUC
values on the five bayes models trained and evaluated
on Studies S1 and S2, respectively. The bottom graph
compares bayes and ml versions of three models on
Study S1. The error bars indicate a 95% confidence in-
terval on the AUC value over multiple validation folds.
Note that the error bars are not useful for comparing
statistical significance of the differences across models,
because the validation folds are matched across mod-
els, and the variability due to the fold must be removed
from the error bars.



3.1 Generalization to new material

The previous simulations held out individual student-
item pairs for validation. This approach was conve-
nient for evaluating models but does not correspond
to the manner in which predictions might ordinarily
be used. Typically, we may have some background in-
formation about the material being learned, and we
wish to use this information to predict how well a new
set of students will fare on the material. Or we might
have some background information about a group of
students, and we wish to use this information to pre-
dict how well they will fare on new material. For ex-
ample, suppose we collect data from students enrolled
in Spanish 1 in the fall semester. At the onset of the
spring semester, when our former Spanish 1 students
begin Spanish 2, can we benefit from the data acquired
in the fall to predict their performance on new mate-
rial?

To model this situation, we conducted further vali-
dation tests in which, instead of holding out random
student-item pairs, we held out random items for all
students. Figure 4 shows mean AUC values for Study
S1 data for the various models. Performance in this
item-generalization task is slightly worse than perfor-
mance when the model has familiarity with both the
students and the items. Nonetheless, it appears that
the models can make predictions with high accuracy
for new material based on inferences about latent stu-
dent traits.

4 Discussion

Psychological models of human memory have typically
been used to characterize the aggregate performance
of a population of students learning a collection of
items [15]. Psychometric models of individual differ-
ences have been used to recover static latent charac-
teristics of students and items. We have shown that by
combining a dynamical model of human memory with
a static latent-state model of individual differences, we
can significantly improve predictions about the perfor-
mance of individual students for specific items. Via
collaborative filtering, we recover information about
the time-varying unobservable knowledge state of a
particular student for specific material by leveraging
data collected from populations of students and col-
lections of material. Our approach has enormous po-
tential to improve electronic tutoring systems, which
rely on accurate models of student knowledge state to
tailor instruction to the needs of individuals.
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Figure 4: Mean AUC values when random items are
heldout during validation folds, Study S1
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